Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256004

RESUMO

Crown gall disease (Agrobacterium tumefaciens), crown/root rot disease (Phytophthora spp.), root lesion disease (Pratylenchus vulnus) and tree vigor are key traits affecting the productivity and quality of walnuts in California. Unchallenged hybrid rootstocks were analyzed by RNA-seq to examine pre-formed factors affecting these traits. Enrichment analysis of the differentially expressed genes revealed that the increased expression of cell wall biogenesis-related genes plays a key role in susceptibility to A. tumefaciens, susceptibility to Phytophthora spp. and increased vigor. Analysis of the predicted subcellular loci of the encoded proteins revealed that many gene products associated with vigor and susceptibility were targeted to the plasma membrane and extracellular space, connecting these traits to sustaining barrier function. We observed that RNA processing and splicing, along with predicted nuclear targeting, were associated with resistance to A. tumefaciens, resistance to Phytophthora spp. and low vigor. Four genes within the J. microcarpa QTL region for resistance to A. tumefaciens and Phytophthora spp. were represented among our transcripts, with two of the genes being differentially expressed in association with resistance to A. tumefaciens and decreased vigor. No differential expression related to Phytophthora spp. or P. vulnus resistance was observed in this region. Additionally, the J. microcarpa haplotype expressed more transcripts associated with resistance to A. tumefaciens, Phytophthora spp. and low vigor, but not P. vulnus, than the J. regia haplotype. We also report unique and shared hormone and defense responses associated with each trait. This research suggests a link between cell wall biogenesis, vigor and critical root diseases of walnut.


Assuntos
Juglans , Phytophthora , Juglans/genética , Perfilação da Expressão Gênica , Transcriptoma , Nozes , Parede Celular/genética
2.
Nat Prod Res ; : 1-8, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38217326

RESUMO

Caesalpinia bonducella L. is a traditional medicinal plant containing a potential homoisoflavonoid, bonducellin, with therapeutic values against polycystic ovary syndrome, oxidative damage, pathogenic bacteria, irregular menstrual cycle, ovarian cancer and diabetes. Owing to the multi-therapeutic properties of bonducellin, knowledge of its biosynthetic pathway genes will help understand its regulatory mechanism and thus improve the yield. This study sequenced C. bonducella seed mRNA transcriptome to identify the genes in bonducellin biosynthesis. Before this, the presence of bonducellin in the seed samples was analysed by HPLC using the chemically synthesised bonducellin as the standard. Seven key genes encoding enzymes involved in the synthesis of bonducellin via the phenylpropanoid pathway were identified. The expression of selective genes from the bonducellin biosynthetic pathway was validated using qRT-PCR and comparable with RNA-Seq data. Here, we put forth the sequences of 67,560 genes from C. bonducella and highlight the bonducellin biosynthetic pathway genes.

3.
Mol Biol Rep ; 51(1): 93, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194000

RESUMO

BACKGROUND: Unregulated extraction of highly traded medicinal plant species results in drastic decline of the natural resources and alters viable sex ratio of populations. Conservation and long-term survival of such species, require gender specific restoration programs to ensure reproductive success. However, it is often difficult to differentiate sex of individuals before reaching reproductive maturity. C. fenestratum is one of the medicinally important and overexploited dioecious woody liana, with a reproductive maturity of 15 years. Currently, no information is available to identify sex of C. fenestratum in seedling stage while augmenting the resources. Thus, the current study envisages to utilize transcriptomics approach for gender differentiation which is imperative for undertaking viable resource augmentation programmes. METHODS AND RESULTS: Gender specific SNPs with probable role in sexual reproduction/sex determination was located using comparative transcriptomics approach (sampling male and female individuals), alongside gene ontology and annotation. Nine sets of primers were synthesized from 7 transcripts (involved in sexual reproduction/other biological process) containing multiple SNP variants. Out of the nine primer pairs, only one SNP locus with no available information of its role in reproduction, showed consistent and accurate results (males-heterozygous and females-homozygous), in the analyzed 40 matured individuals of known sexes. Thus validated the efficiency of this SNP marker in differentiating male and female individuals. CONCLUSIONS: The study could identify SNPs linked to the loci with apparent role in gender differentiation. This SNP marker can be used for early sexing of seedlings for in-situ conservation and resource augmentation of C. fenestratum in Kerala, India.


Assuntos
Polimorfismo de Nucleotídeo Único , Reprodução , Humanos , Feminino , Masculino , Polimorfismo de Nucleotídeo Único/genética , Perfilação da Expressão Gênica , Ontologia Genética , Heterozigoto , Plântula
4.
Front Plant Sci ; 14: 1219580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528972

RESUMO

Spilocea oleagina is a dangerous obligate fungal pathogen of olive, feared in the Mediterranean countries, causing Peacock's eye or leaf spot infection, which can lead to a serious yield loss of approximately 20% or higher depending on climatic conditions. Coping with this disease is much more problematic for organic farms. To date, knowledge on the genetic control of possible mechanisms of resistance/low susceptibility is quite limited. In this work, comparative transcriptomic analysis (RNA-seq) was conducted in leaf tissues of a low susceptible cultivar Koroneiki and a high susceptible cultivar Nocellara del Belice, both tested in the field using the NaOH test, considering two stages-"zero sign of disease" and "evident sign of infection". Cultivars showed a very large number of differentially expressed genes (DEGs) in both stages. 'Koroneiki' showed an extensive hormonal crosstalk, involving Abscisic acid (ABA) and ethylene synergistically acting with Jasmonate, with early signaling of the disease and remarkable defense responses against Spilocea through the over-expression of many resistance gene analogs or pathogenesis-related (PR) genes: non-specific lipid-transfer genes (nsLTPs), LRR receptor-like serine/threonine-protein kinase genes, GDSL esterase lipase, defensin Ec-AMP-D2-like, pathogenesis-related leaf protein 6-like, Thaumatin-like gene, Mildew resistance Locus O (MLO) gene, glycine-rich protein (GRP), MADS-box genes, STH-21-like, endochitinases, glucan endo-1,3-beta-glucosidases, and finally, many proteinases. Numerous genes involved in cell wall biogenesis, remodeling, and cell wall-based defense, including lignin synthesis, were also upregulated in the resistant cultivar, indicating the possible role of wall composition in disease resistance. It was remarkable that many transcription factors (TS), some of which involved in Induced Systemic Resistance (ISR), as well as some also involved in abiotic stress response, were found to be uniquely expressed in 'Koroneiki', while 'Nocellara del Belice' was lacking an effective system of defense, expressing genes that overlap with wounding responses, and, to a minor extent, genes related to phenylpropanoid and terpenoid pathways. Only a Thaumatin-like gene was found in both cultivars showing a similar expression. In this work, the genetic factors and mechanism underlying the putative resistance trait against this fungal pathogen were unraveled for the first time and possible target genes for breeding resistant olive genotypes were found.

5.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34014838

RESUMO

Although antiretroviral therapy suppresses HIV replication, it does not eliminate viral reservoirs or restore damaged lymphoid tissue, posing obstacles to HIV eradication. Using the SIV model of AIDS, we investigated the effect of mesenchymal stem/stromal cell (MSC) infusions on gut mucosal recovery, antiviral immunity, and viral suppression and determined associated molecular/metabolic signatures. MSC administration to SIV-infected macaques resulted in viral reduction and heightened virus-specific responses. Marked clearance of SIV-positive cells from gut mucosal effector sites was correlated with robust regeneration of germinal centers, restoration of follicular B cells and T follicular helper (Tfh) cells, and enhanced antigen presentation by viral trapping within the follicular DC network. Gut transcriptomic analyses showed increased antiviral response mediated by pathways of type I/II IFN signaling, viral restriction factors, innate immunity, and B cell proliferation and provided the molecular signature underlying enhanced host immunity. Metabolic analysis revealed strong correlations between B and Tfh cell activation, anti-SIV antibodies, and IL-7 expression with enriched retinol metabolism, which facilitates gut homing of antigen-activated lymphocytes. We identified potentially new MSC functions in modulating antiviral immunity for enhanced viral clearance predominantly through type I/II IFN signaling and B cell signature, providing a road map for multipronged HIV eradication strategies.


Assuntos
Centro Germinativo , Mucosa Intestinal/imunologia , Células-Tronco Mesenquimais , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Citocinas/metabolismo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunidade Humoral/imunologia , Macaca mulatta , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia
6.
Front Plant Sci ; 12: 626483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33719298

RESUMO

We showed previously that gallic acid is produced in walnut from 3-dehydroshikimate by a shikimate dehydrogenase (JrSkDH). This study focuses on the next step in the hydrolysable tannin pathway, the formation of 1-O-galloyl-ß-D-glucose from the phenolic gallic acid and UDP glucose by a glycosyltransferase. JrGGT1 (UGT84A73) and JrGGT2 (UGT84A74) are predicted to be two such glycosyltransferases, which we expressed in tobacco plants. GC-MS analysis of the transgenic tobacco revealed moderate, yet significant alterations in plant secondary metabolism, such as depleted phenolic acids, including gallic acid. We postulate that these effects are due to JrGGT1 and JrGGT2 activity, as JrGGT orthologs glycosylate these phenolic compounds in vitro. Moreover, JrGGT expression in tobacco caused upregulation of shikimic acid pathway metabolites and differing responses in phenylpropanoids, such as phenolic acids and flavonoids. In transcriptome analysis of walnut pellicle tissues, both JrGGTs showed substantial and significant expression correlations with the gallic acid-producing JrSkDHs and were highly coexpressed with the genetic circuits constituting the shikimic acid and phenylpropanoid biosynthetic pathways. Verification of JrGGT gene expression by transcriptome analysis of 20 walnut tissues revealed striking similarities with that of the pellicle data, with the greatest expression in roots, wood, buds, and leaves of Juglans regia cv. Chandler: tissues that typically accumulate hydrolysable tannins. Like the transgenic tobacco, pellicle metabolomic analyses revealed that many phenylpropanoids correlated negatively with JrGGT expression, while shikimic acid pathway metabolites correlated positively with JrGGT expression. This research supports the hypothesis that JrGGT1 and JrGGT2 play non-trivial roles in metabolism of phenolic acids, flavonoids, and ostensibly, tannins.

7.
Genes (Basel) ; 13(1)2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-35052400

RESUMO

Pistacia vera (L.) is an alternate bearing species. The tree produces axillary inflorescence buds every year. Still, they abscise in "ON" overloaded shoots, causing a limited production in the following "OFF" year, causing a significant and unfavorable production fluctuation. In this work, we carried out de novo discovery and transcriptomic analysis in fruits of "ON" and "OFF" shoots of the cultivar Bianca. We also investigated whether the fruit signaling pathway and hormone biosynthesis directly or indirectly linked to the premature fall of the inflorescence buds causing alternate bearing. We identified 1536 differentially expressed genes (DEGs) in fruits of "ON" vs. "OFF" shoots, which are involved primarily in sugar metabolism, plant hormone pathways and transcription factors. The premature bud abscission linked to the phenomenon is attributable to a lack of nutrients (primarily sugar) and the possible competition between the same branches' sinks (fruits vs. inflorescence buds). Hormone pathways are involved as a response to signals degradation and remobilization of carbon and nutrients due to the strengthening of the developing embryos. Genes of the secondary metabolism and transcription factors are also involved in tailoring the individual branches response to the nutritional stress and sink competition. Crosstalk among sugar and various hormone-related genes, e.g., ethylene, auxin, ABA and cytokinin, were determined. The discovery of putative biomarkers like callose synthase 5, trehalose-6-phosphate synthase, NAD(P)-linked oxidoreductase and MIOX2, Jasmonate, and salicylic acid-related genes can help to design precision farming practices to mitigate the alternate bearing phenomenon to increase farming profitability. The aim of the analysis is to provide insight into the gene expression profiling of the fate of "ON" and "OFF" fruits associated with the alternate bearing in the pistachio.


Assuntos
Flores/genética , Frutas/genética , Inflorescência/genética , Pistacia/genética , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Transcriptoma , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inflorescência/crescimento & desenvolvimento , Pistacia/crescimento & desenvolvimento
8.
Genes (Basel) ; 11(8)2020 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722492

RESUMO

The alteration of heavy ("ON/bearing") and light ("OFF/non-bearing") yield in pistachio (Pistacia vera L.) has been reported to result from the abscission of inflorescence buds on high yielding trees during the summer, but the regulatory mechanisms involved in this bud abscission remain unclear. The analysis provides insights into the transcript changes between inflorescence buds on bearing and non-bearing shoots, that we indicated as "ON" and "OFF", and shed light on the molecular mechanisms causing premature inflorescence bud abscission in the pistachio cultivar "Bianca" which can be related to the alternate bearing behavior. In this study, a transcriptome analysis was performed in inflorescence buds of "ON" and "OFF" shoots. A total of 14,330 differentially expressed genes (DEGs), most of which are involved in sugar metabolism, plant hormone pathways, secondary metabolism and oxidative stress pathway, were identified. Our results shed light on the molecular mechanisms underlying inflorescence bud abscission in pistachio and we proposed a hypothetical model behind the molecular mechanism causing this abscission in "ON" shoots. Results highlighted how changes in genes expressed in nutrient pathways (carbohydrates and mineral elements) in pistachio "ON" vs. "OFF" inflorescence buds triggers a cascade of events involving trehalose-6-phosphate and target of rapamycin (TOR) signaling, SnRK1 complex, hormones, polyamines and ROS which end, through programmed cell death and autophagy phenomena, with the abscission of inflorescence buds. This is the first study reporting gene expression profiling of the fate of "ON" and "OFF" inflorescence buds associated with the alternate bearing in the pistachio.


Assuntos
Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Pistacia/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Flores/crescimento & desenvolvimento , Flores/metabolismo , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Pistacia/crescimento & desenvolvimento , Pistacia/metabolismo , Proteínas de Plantas/genética
9.
Int J Mol Sci ; 21(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32070009

RESUMO

Following photosynthesis, sucrose is translocated to sink organs, where it provides the primary source of carbon and energy to sustain plant growth and development. Sugar transporters from the SWEET (sugar will eventually be exported transporter) family are rate-limiting factors that mediate sucrose transport across concentration gradients, sustain yields, and participate in reproductive development, plant senescence, stress responses, as well as support plant-pathogen interaction, the focus of this study. We identified 25 SWEET genes in the walnut genome and distinguished each by its individual gene structure and pattern of expression in different walnut tissues. Their chromosomal locations, cis-acting motifs within their 5' regulatory elements, and phylogenetic relationship patterns provided the first comprehensive analysis of the SWEET gene family of sugar transporters in walnut. This family is divided into four clades, the analysis of which suggests duplication and expansion of the SWEET gene family in Juglans regia. In addition, tissue-specific gene expression signatures suggest diverse possible functions for JrSWEET genes. Although these are commonly used by pathogens to harness sugar products from their plant hosts, little was known about their role during Xanthomonas arboricola pv. juglandis (Xaj) infection. We monitored the expression profiles of the JrSWEET genes in different tissues of "Chandler" walnuts when challenged with pathogen Xaj417 and concluded that SWEET-mediated sugar translocation from the host is not a trigger for walnut blight disease development. This may be directly related to the absence of type III secretion system-dependent transcription activator-like effectors (TALEs) in Xaj417, which suggests different strategies are employed by this pathogen to promote susceptibility to this major aboveground disease of walnuts.


Assuntos
Juglans/genética , Proteínas de Membrana Transportadoras/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Transporte Biológico/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Juglans/microbiologia , Proteínas de Membrana Transportadoras/classificação , Família Multigênica/genética , Filogenia , Desenvolvimento Vegetal/genética , Doenças das Plantas/microbiologia , Sistemas de Secreção Tipo III/genética , Xanthomonas/genética , Xanthomonas/patogenicidade
10.
Hortic Res ; 6: 55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30937174

RESUMO

Members of the genus Juglans are monecious wind-pollinated trees in the family Juglandaceae with highly heterozygous genomes, which greatly complicates genome sequence assembly. The genomes of interspecific hybrids are usually comprised of haploid genomes of parental species. We exploited this attribute of interspecific hybrids to avoid heterozygosity and sequenced an interspecific hybrid Juglans microcarpa × J. regia using a novel combination of single-molecule sequencing and optical genome mapping technologies. The resulting assemblies of both genomes were remarkably complete including chromosome termini and centromere regions. Chromosome termini consisted of arrays of telomeric repeats about 8 kb long and heterochromatic subtelomeric regions about 10 kb long. The centromeres consisted of arrays of a centromere-specific Gypsy retrotransposon and most contained genes, many of them transcribed. Juglans genomes evolved by a whole-genome-duplication dating back to the Cretaceous-Paleogene boundary and consist of two subgenomes, which were fractionated by numerous short gene deletions evenly distributed along the length of the chromosomes. Fractionation was shown to be asymmetric with one subgenome exhibiting greater gene loss than the other. The asymmetry of the process is ongoing and mirrors an asymmetry in gene expression between the subgenomes. Given the importance of J. microcarpa × J. regia hybrids as potential walnut rootstocks, we catalogued disease resistance genes in the parental genomes and studied their chromosomal distribution. We also estimated the molecular clock rates for woody perennials and deployed them in estimating divergence times of Juglans genomes and those of other woody perennials.

11.
J Plant Physiol ; 224-225: 163-172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29656008

RESUMO

Tef [Eragrostis tef (Zucc.) Trotter], a staple food crop in the Horn of Africa and particularly in Ethiopia, has several beneficial agronomical and nutritional properties, including waterlogging and drought tolerance. In this study, we performed microRNA profiling of tef using the Illumina HiSeq 2500 platform, analyzing both shoots and roots of two tef genotypes, one drought-tolerant (Tsedey) and one drought-susceptible (Alba). We obtained more than 10 million filtered reads for each of the 24 sequenced small cDNA libraries. Reads mapping to known miRNAs were more abundant in the root than shoot tissues. Thirteen and 35 miRNAs were significantly modulated in response to drought, in Alba and Tsedey roots, respectively. One miRNA was upregulated under drought conditions in both genotypes. In shoots, nine miRNAs were modulated in common between the two genotypes and all showed similar trends of expression. One-hundred and forty-seven new miRNA mature sequences were identified in silico, 22 of these were detected in all relevant samples and seven were differentially regulated when comparing drought with normal watering. Putative targets of the miRNA regulated under drought in root and shoot tissues were predicted. Among the targets were transcription factors such as CCAAT-HAP2, MADS and NAC. Verification with qRT-PCR revealed that five of six potential targets showed a pattern of expression that was consistent with the correspondent miRNA amount measured by RNA-Seq. In general, candidate miRNAs involved in the post-transcriptional regulation of the tef response to drought could be included in next-generation breeding programs.


Assuntos
Secas , Eragrostis/fisiologia , MicroRNAs/genética , RNA de Plantas/genética , Eragrostis/genética , Genótipo , MicroRNAs/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , RNA de Plantas/metabolismo
12.
Front Plant Sci ; 9: 277, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541089

RESUMO

A bioinformatic analysis of previously published RNA-Seq studies on Huanglongbing (HLB) response and tolerance in leaf tissues was performed. The aim was to identify genes commonly modulated between studies and genes, pathways and gene set categories strongly associated with this devastating Citrus disease. Bioinformatic analysis of expression data of four datasets present in NCBI provided 46-68 million reads with an alignment percentage of 72.95-86.76%. Only 16 HLB-regulated genes were commonly identified between the three leaf datasets. Among them were key genes encoding proteins involved in cell wall modification such as CESA8, pectinesterase, expansin8, expansin beta 3.1, and a pectate lyase. Fourteen HLB-regulated genes were in common between all four datasets. Gene set enrichment analysis showed some different gene categories affected by HLB disease. Although sucrose and starch metabolism was highly linked with disease symptoms, different genes were significantly regulated depending on leaf growth and infection stages and experimental conditions. Histone-related transcription factors were highly affected by HLB in the analyzed RNA-Seq datasets. HLB tolerance was linked with induction of proteins involved in detoxification. Protein-protein interaction (PPI) network analysis confirmed a possible role for heat shock proteins in curbing disease progression.

13.
Sci Rep ; 8(1): 1970, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386527

RESUMO

RNA-Seq analysis is a strong tool to gain insight into the molecular responses to biotic stresses in plants. The objective of this work is to identify specific and common molecular responses between different transcriptomic data related to fungi, virus and bacteria attacks in Malus x domestica. We analyzed seven transcriptomic datasets in Malus x domestica divided in responses to fungal pathogens, virus (Apple Stem Grooving Virus) and bacteria (Erwinia amylovora). Data were dissected using an integrated approach of pathway- and gene- set enrichment analysis, Mapman visualization tool, gene ontology analysis and inferred protein-protein interaction network. Our meta-analysis revealed that the bacterial infection enhanced specifically genes involved in sugar alcohol metabolism. Brassinosteroids were upregulated by fungal pathogens while ethylene was highly affected by Erwinia amylovora. Gibberellins and jasmonates were strongly repressed by fungal and viral infections. The protein-protein interaction network highlighted the role of WRKYs in responses to the studied pathogens. In summary, our meta-analysis provides a better understanding of the Malus X domestica transcriptome responses to different biotic stress conditions; we anticipate that these insights will assist in the development of genetic resistance and acute therapeutic strategies. This work would be an example for next meta-analysis works aiming at identifying specific common molecular features linked with biotic stress responses in other specialty crops.


Assuntos
Cruzamentos Genéticos , Malus/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genes de Plantas , Inativação Metabólica , Bases de Conhecimento , Malus/microbiologia , Malus/virologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas/genética , Metabolismo Secundário/genética , Fatores de Transcrição/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-30598660

RESUMO

BACKGROUND: The oral cavities of snakes are replete with various types of bacterial flora. Culture-dependent studies suggest that some of the bacterial species are responsible for secondary bacterial infection associated with snakebite. A complete profile of the ophidian oral bacterial community has been unreported until now. Therefore, in the present study, we determined the complete bacterial compositions in the oral cavity of some snakes from India. METHODS: Total DNA was isolated from oral swabs collected from three wild snake species (Indian Cobra, King Cobra and Indian Python). Next, the DNA was subjected to PCR amplification of microbial 16S rRNA gene using V3-region-specific primers. The amplicons were used for preparation of DNA libraries that were sequenced on an Illumina MiSeq platform. RESULTS: The cluster-based taxonomy analysis revealed that Proteobacteria and Actinobacteria were the most predominant phyla present in the oral cavities of snakes. This result indicates that snakes show more similarities to birds than mammals as to their oral bacterial communities. Furthermore, our study reports all the unique and common bacterial species (total: 147) found among the oral microbes of snakes studied, while the majority of commonly abundant species were pathogens or opportunistic pathogens to humans. A wide difference in ophidian oral bacterial flora suggests variation by individual, species and geographical region. CONCLUSION: The present study would provide a foundation for further research on snakes to recognize the potential drugs/antibiotics for the different infectious diseases.

15.
J. venom. anim. toxins incl. trop. dis ; 24: 41, 2018. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-984693

RESUMO

The oral cavities of snakes are replete with various types of bacterial flora. Culture-dependent studies suggest that some of the bacterial species are responsible for secondary bacterial infection associated with snakebite. A complete profile of the ophidian oral bacterial community has been unreported until now. Therefore, in the present study, we determined the complete bacterial compositions in the oral cavity of some snakes from India. Methods: Total DNA was isolated from oral swabs collected from three wild snake species (Indian Cobra, King Cobra and Indian Python). Next, the DNA was subjected to PCR amplification of microbial 16S rRNA gene using V3-region-specific primers. The amplicons were used for preparation of DNA libraries that were sequenced on an Illumina MiSeq platform. Results: The cluster-based taxonomy analysis revealed that Proteobacteria and Actinobacteria were the most predominant phyla present in the oral cavities of snakes. This result indicates that snakes show more similarities to birds than mammals as to their oral bacterial communities. Furthermore, our study reports all the unique and common bacterial species (total: 147) found among the oral microbes of snakes studied, while the majority of commonly abundant species were pathogens or opportunistic pathogens to humans. A wide difference in ophidian oral bacterial flora suggests variation by individual, species and geographical region. Conclusion: The present study would provide a foundation for further research on snakes to recognize the potential drugs/antibiotics for the different infectious diseases.(AU)


Assuntos
Serpentes , Infecções Bacterianas , Actinobacteria , Proteobactérias , Sequenciamento de Nucleotídeos em Larga Escala , Antibacterianos , Reação em Cadeia da Polimerase
16.
Front Plant Sci ; 8: 1569, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955361

RESUMO

Identifying key information in transcriptomic data is very important, especially when the "omic" study deals with plant responses to stresses in field conditions where a high number of variables and disturbing factors may affect the analysis. In this meta-analysis we collected 12 transcriptomic works in Malus in order to identify which key genes, proteins, gene categories are involved in general plant pathological conditions and those features linked with exclusive biotic stress responses. Those genes that are only related with molecular responses to pathogen attacks and those linked with other plant physiological processes were identified. A pipeline composed by pathway and gene set enrichment analysis, protein-protein interaction networks and gene visualization tools was employed. A total of 13,230 genes of the 12 studies were analyzed with functional data mining tools: 5,215 were upregulated, 8,015 were downregulated. Gene set enrichment analysis pointed out that photosynthesis was inhibited by Erwinia amylovora and fungal pathogens. Different hormonal crosstalk was linked with responses to different pathogens. Gibberellin-related pathways, ABA-related were mostly repressed by fungal pathogens. Relating to transcription factors, genes encoding MYBs and WRKY2 were downregulated by fungal pathogens and 12 WRKYs were commonly regulated by different biotic stresses The protein-protein interaction analysis discovered the presence of several proteins affected by more than one biotic stress including a WRKY40 and some highly interactive proteins such as heat shock proteins. This study represents a first preliminary curated meta-analysis of apple transcriptomic responses to biotic stresses.

17.
Twin Res Hum Genet ; 20(4): 271-280, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28724479

RESUMO

Human populations living during the Holocene underwent considerable microevolutionary change. It has been theorized that the transition of Holocene populations into agrarianism and urbanization brought about culture-gene co-evolution that favored via directional selection genetic variants associated with higher general cognitive ability (GCA). To examine whether GCA might have risen during the Holocene, we compare a sample of 99 ancient Eurasian genomes (ranging from 4.56 to 1.21 kyr BP) with a sample of 503 modern European genomes (Fst = 0.013), using three different cognitive polygenic scores (130 SNP, 9 SNP and 11 SNP). Significant differences favoring the modern genomes were found for all three polygenic scores (odds ratios = 0.92, p = 001; .81, p = 037; and .81, p = .02 respectively). These polygenic scores also outperformed the majority of scores assembled from random SNPs generated via a Monte Carlo model (between 76.4% and 84.6%). Furthermore, an indication of increasing positive allele count over 3.25 kyr was found using a subsample of 66 ancient genomes (r = 0.22, pone-tailed = .04). These observations are consistent with the expectation that GCA rose during the Holocene.


Assuntos
Cognição , Evolução Molecular , Genoma Humano , Modelos Genéticos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Seleção Genética , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...